Pressure Shift Freezing as Potential Alternative for Generation of Decellularized Scaffolds
نویسندگان
چکیده
Background. Protocols using chemical reagents for scaffold decellularization can cause changes in the properties of the matrix, depending on the type of tissue and the chemical reagent. Technologies using physical techniques may be possible alternatives for the production grafts with potential superior matrix characteristics. Material and Methods. We tested four different technologies for scaffold decellularization. Group 1: high hydrostatic pressure (HHP), 1 GPa; Group 2: pressure shift freezing (PSF); Group 3: pulsed electric fields (PEF); Group 4: control group: detergent (SDS). The degree of decellularization was assessed by histological analysis and the measurement of residual DNA. Results. Tissue treated with PSF showed a decellularization with a penetration depth (PD) of 1.5 mm and residual DNA content of 24% ± 3%. HHD treatment caused a PD of 0.2 mm with a residual DNA content of 28% ± .4%. PD in PEF was 0.5 mm, and the residual DNA content was 49% ± 7%. In the SDS group, PD was found to be 5 mm, and the DNA content was determined at 5% ± 2%. Conclusion. PSF showed promising results as a possible technique for scaffold decellularization. The penetration depth of PSF has to be optimized, and the mechanical as well as the biological characteristics of decellularized grafts have to be evaluated.
منابع مشابه
Optimum parameters for freeze-drying decellularized arterial scaffolds.
Decellularized arterial scaffolds have achieved success in advancing toward clinical use as vascular grafts. However, concerns remain regarding long-term preservation and sterilization of these scaffolds. Freeze drying offers a means of overcoming these concerns. In this study, we investigated the effects of various freeze-drying protocols on decellularized porcine carotid arteries and conseque...
متن کاملCharacterization of natural, decellularized and reseeded porcine tooth bud matrices.
Dental tissue engineering efforts have yet to identify scaffolds that instruct the formation of bioengineered teeth of predetermined size and shape. Here we investigated whether extracellular matrix (ECM) molecules present in natural tooth scaffolds can provide insight on how to achieve this goal. We describe methods to effectively decellularize and demineralize porcine molar tooth buds, while ...
متن کاملDecellularized kidney in the presence of chondroitin sulfate as a natural 3D scaffold for stem cells
Objective(s): Use of biological scaffolds and automating the cells directing process with materials such as growth factors and glycosaminoglycans (GAGs) in a certain path may have beneficial effects in tissue engineering and regenerative medicine in future. In this research, chondroitin sulfate sodium was used for impregnation of the scaffolds. It is a critical component in extracellular matrix...
متن کاملPreparation of decellularized three dimentional scaffolds as the model for tissue engineering and their functional assessments in vitro application of blastema tissue
Tissue engineering is based on three main factors including scaffolds, cells and growth factors. Natural scaffolds derived from decellularized tissues and organs have been successfully used in tissue engineering. Decellularization studies have shown that natural scaffolds which maintaine their main structure and properties could be a suitable tool for studying cellular behaviors and preparation...
متن کاملPreparation of acellular sciatic nerve scaffold and it’s mechanical and histological properties for use in peripheral nerve regeneration
Background: Tissue engineering is a developing multidisciplinary and interdisciplinary field involving the use of bioartificial implants for tissue remodeling with the target for repair and enhancing tissue or organ function. Acellular nerve has been used in experimental models as a peripheral nerve substitute. The purpose of the present study was to evaluate the mechanical and histological cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013